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We study the applicability of parallelized/vectorized Monte Carlo (MC) algo- 
rithms to the simulation of domain growth in two-dimensional lattice gas 
models undergoing an ordering process after a rapid quench below an order- 
disorder transition temperature. As examples we consider models with 2 x 1 and 
c(2x2)  equilibrium superstructures on the square and rectangular lattices, 
respectively. We also study the case of phase separation ("1 x 1" islands) on the 
square lattice. A generalized parallel checkerboard algorithm for Kawasaki 
dynamics is shown to give rise to artificial spatial correlations in all three 
models. However, only if superstructure domains evolve do these correlations 
modify the kinetics by influencing the nucleation process and result in a reduced 
growth exponent compared to the value from the conventional heat bath algo- 
rithm with random single-site updates. In order to overcome these artificial 
modifications, two MC algorithms with a reduced degree of parallelism 
("hybrid" and "mask" algorithms, respectively) are presented and applied. As 
the results indicate, these algorithms are suitable for the simulation of super- 
structure domain growth on parallel/vector computers. 

KEY WORDS:  Monte Carlo algorithms; 2D lattice gas models; 2D Ising 
model; domain growth; phase separation; Kawasaki dynamics; parallel 
computer; vector computer. 

1. I N T R O D U C T I O N  

The kinetics of nonequilibrium systems undergoing ordering processes, 
such as domain growth and phase separation, is of current interest in 
surface physics. For systems rapidly quenched below an order-disorder 
transition temperature it is now widely accepted that the average domain 
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size R(t) represents a typical length scale describing the main physical 
features of the growth. By analogy to static critical phenomena, it has been 
proposed that different growth laws for R(t) and the scaling function of the 
structure factor may partition various physical systems into dynamical 
universality classes, but we are still far from a complete understanding of 
the basis for the determination of these classes. The kinetics of domain 
growth and phase separation was studied both experimentally (1-13) and 
analytically,(14 23) but most of the contributions came from Monte Carlo 
(MC) simulations of spin and lattice gas models. (24-41) For reviews see, e.g., 
refs. 1 and 42 and references therein. 

For the calculation of equilibrium properties very fast MC methods 
have been developed and successfully applied; among them are techniques 
for constructing fast algorithms suitable for vector computers or multi- 
processor systems (43-52~ (e.g., vectorizable algorithms with multispin 
coding) or new methods applying to special cases such as critical slowing 
down (e.g., the Swendsen-Wang algorithm (53) and the extension made by 
Wolff(54)). The efficiency of algorithms in both groups originates in the 
more or less distinguished use of parallel or--in the case of vector 
processors--"quasiparaUel" updates of whole groups of lattice sites (sublat- 
tices) instead of single sites. If detailed balance holds, thermal equilibrium 
will be reached in the course of the simulated Markov chain regardless of 
which transition probability is used. However, if one is interested in the 
kinetics of phase transitions, the underlying physical model of time evolu- 
tion must be considered and therefore artificial kinetics such as the cluster 
flips of the Swendsen-Wang algorithm cannot be used to simulate a system 
in contact with a heat bath. The picture of phonons which transfer energy 
to single atoms by inelastic random scattering is described best by the 
dynamical evolution simulated by the Metropolis algorithm in which the 
lattice sites are visited at random. Hence, even parallelized or vectorized 
versions of this standard algorithm may influence the outcoming kinetics 
because of artificial spatial corrections which are introduced by parallel 
updates. But apart from a few studies of the ferromagnetic Ising 
model (31'37) and the anisotropic next-nearest-neighbors Ising (ANNNI) 
model, (39'4~ a systematic investigation considering the applicability of 
parallel or vectorized algorithms, especially with respect to the kinetics of 
superstructure domain growth, to our knowledge is missing. 

We therefore studied the influence of parallelization in simulations of 
domain growth kinetics in three different two-dimensional lattice gas 
models described in the following section. We will also discuss the rela- 
tionship between computational techniques and the effectively simulated 
dynamics of the system under consideration. In Section 3 some fundamen- 
tal effects of spatial correlations on domain growth in a lattice gas model 
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with 2 x  1 equilibrium superstructure are reported. In Sec t ion4  we 
generalize these findings to other  lattice gas models. In  the last section we 
propose improvements  for parallelized M C  algori thms which are shown to 
be able to overcome artificial spatial correlations. 

2. M O D E L S  

2.1 .  L a t t i c e  G a s  M o d e l s  

In this study we used three different lattice gas models on a 
rectangular /square lattice of  linear size L. All models can be described by 
a Hami ton ian  H with nearest neighbor  interactions, 

L L 

H = - 2  <c0ci+,,J- Z <cifi, j+, (1) 
i , j =  1 i , j =  1 

where c~ are occupat ion numbers  and periodic boundary  conditions are 
applied. Depending on the lateral pair interaction parameters  ~1,2, we 
obtain the lattice gas models I - I I l  which are characterized in Table I. 

We used a linear lattice size L = 64 and applied typically 300-500 
independent  M C  runs except for some tests with L = 256 in order  to check 
for finite-size effects. This proved to be sufficient for a correct valuation of  
the different algori thms under  consideration. First we concentrate  on the 
case of  a 2 x 1 superstructure on a rectangular lattice with attractive as well 
as repulsive interactions, which are anisotropic in strength and give rise to 
anisotropic domain  growth. Second, we compare  the results of these 
simulations with the kinetics of two well-known systems, choosing lattice 
gas models which are isomorphic  to the kinetic Ising model  with 

Table I. Lattice Gas Models with Pair Interaction 
Parameter E1 (Y Direction) and ~2 (x Direction) ~ 

Model Superstructure et, e 2 Lattice n 

I 2 x 1 ~1 > 0;  e 2 = - 1/3 el < 0 Rectangular 1/2 
(attractive) (repulsive) 

II c(2 x 2) el = e2 < 0 Square 1/2 
(repulsive) 

III No superstructure, e~ = e2 > 0 Square 1/3 
1 • 1 islands (attractive) 

a n is the value of the growth exponent expected from phenomenological theories. 

822/66/3-4-27 
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ferromagnetic and antiferromagnetic interactions, respectively. As the 
existence or absence of superstructures in the thermal equilibrium seems 
to be important, we consider both cases. The ordering process is studied 
using Kawasaki ("hopping") dynamics with nearest neighbor exchange at 
constant coverage 0 = �89 We consider thermal quenches from "infinitely 
high" temperature (corresponding to random start configurations) to a 
temperature T/Tc = 0.6 well below the order-disorder transition. 

From theoretical predictions and MC calculations the average linear 
size of ordered domains R is expected to obey an algebraic growth law 
R(t) = a(T)t n (after a "nucleation" phase has passed and before the finite 
lattice size becomes important) with a kinetic or growth exponent n deter- 
mined by the dynamical universality class of the system under considera- 
tion. If the microscopic dynamics is based on translational diffusion 
(partMe-vacancy exchanges), the order parameter is intrinsically conserved 
for model I l l  and nonconserved for models I and II. For conserved order 
parameter and long-range diffusion (model III) systems have been found to 
follow the Lifshitz-Slyozov (~4/behavior with n = �89 whereas the curvature- 
driven growth mode described by Lifshitz (15) and Allen and Cahn (~6) with 
n = �89 applies in the case of nonconserved order parameter (models I 
and II). The average linear domain size R was measured in three different 
ways: 

As a first measure (which can be used only for models I and II), we 
calculated the quantity (I ~ ( t ) l ) L  =: R~,(t) from the modulus of the order 
parameter gY, averaged over independent Monte Carlo runs at time t 
(L denotes the linear lattice size as introduced above). The order parameter 
7 t of a single lattice gas configuration is defined in the sense of a "staggered 
occupation density," that is, as the difference of the densities of occupied 
sites of the two sublattices defined by the superstructure under considera- 
tion (see Fig. 3 for model I; in the case of model II the two sublattices are 
given by the "black" and "white" sites of a checkerboardlike partition). As 
a second measure for R we used the quantity Re( t ) :=2(AE( t ) )  -1= 
2 [ ( E ( t ) ) -  Eeq(T)]- 1 derived from the reciprocal average excess energy 
AE(t) per lattice site at time t [where Eeq(T) is the average equilibrium 
internal energy per lattice site for the quench temperature T]. The third 
measure for R is the first crossing of the 0 2 level (--asymptotic value for 
r ~  ~ )  of the pair correlation function G(r)= (CoCr) at time t, which is 
denoted by Ra(t). In the subsequent discussions the subscripts ~, E, and 
G will be occasionally omitted if we do not want to make reference to the 
method used to evaluate R. 
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2.2. C o m p u t a t i o n a l  Techn iques  

The algorithms discussed in this work make use of parallel computing, 
which, as we aim to show, can cause considerable errors in the simulation 
of ordering kinetics. We will propose solutions for this problem, however, 
without introducing specialized (and very fast) algorithms taking care of 
special hardware features or using operations on the lowest bit-level and so 
on. Such codes could easily be constructed from the ideas presented below. 
As a consequence, the speed of the algorithms discussed in Section 5 is only 
about 2 x 10 6 attempted jumps per sec including the times for the calcula- 
tion of energy, order parameter, correlation function, and structure factor. 

The conventional way of parallelization/vectorization is to consider 
either several jumps in parallel (=a t  the same time) on a SIMD-multipro- 
cessor system (e.g., AMT-DAP), or only "quasiparalM" (in an inner loop) 
on a vector computer (e.g., CRAY Y-MP). For simplicity, we speak of 
"parallel" algorithms in both cases. However, parallelization forces restric- 
tions upon the minimal distance of sites updated at the same time step. If 
the distance between lattice sites exceeds a lower bound--determined by 
the range of lateral interactions as well as the range of allowed jumps [to 
nearest-neighbor (NN) sites, next-nearest-neighbor (NNN) sites,... ]--the 
sites are called "independent." This leads to a generalization of the checker- 
board principle (4s'46) which implies that independent sites are regularly 
distributed over the lattice, forming S interpenetrating "update sublattices" 
or "U-sublattices" (with S~> 8 for NN interaction and NN jumps on a 
square lattice). These sublattices are randomly selected during a Monte 
Carlo step (MCS) and from all occupied sites within the selected sublattice 
a jump is attempted in a direction which is chosen randomly for every 
inspected site. It appears already from a naive point of view that during 
this procedure artificial spatial correlations can be introduced with a 
periodicity given by the regular U-sublattices. 

This is expressed more precisely in terms of master equations, which 
are very different for serial (=random) and for parallel update proce- 
dures. (31'39) Although there are some indications that Monte Carlo time 
scales for different update algorithms are linearly related if spatially local 
decision criteria are used, no rigorous proof of this statement exists. (39'5~ 
Another criterion requires that there must be no significant "evolution" of 
the system during a Monte Carlo step if the standard master equation 
should be (approximately) simulated by a parallel algorithm. A necessary 
condition is, (31) e.g., for R(t), 

R(t+ 1)-R(t)[ 
[Q[ := -R--~ ,r 1 (2) 
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where t is measured in Monte Carlo steps. We will see in Section 3 that this 
condition is violated immediately after the quench when standard parallel 
schemes are used. Hence, the only way to test parallel algorithms is to 
compare their results with the conventional single-site random-updating 
algorithm, which will be done below. 

The conventional serial algorithm is approached by increasing the 
number of U-sublattices S, but then the degree of parallelism is reduced, 
too. The task is therefore to find a compromise between these effects. 

3. F U N D A M E N T A L  EFFECTS OF SPATIAL CORRELATIONS 

In this section we restrict consideration to model I, i.e., a rectangular 
lattice with a 2 x 1 superstructure. We consider several algorithms with an 
increasing number S of U-sublattices. A serial random-updating algorithm 
with L = 6 4  and 1500 runs (resulting in a kinetic growth exponent of 
n = 0.492 + 0.013 from the evaluation of R~,) is used as a reference for com- 
parison. As outlined in Section2.1, we use different measures for the 
domain size. For each time t their average value as well as the correspond- 
ing fluctuation amplitude [e.g., (]q*(t)[) and (A[ g*(t)] ) ]  are calculated. 
Both quantities are used to determine the best-fit parameters of a power 
law, as well as the errors of the fit parameters. For Re  we actually had to 
consider an offset R~,(t  = 0)--fitting effectively R e ( t )  = at n + R~,(t  = O ) - -  

because for finite systems the average modulus of the order parameter for 
T =  oo (the ensemble from which the starting configuration is drawn) is not 
exactly zero. 

In a first step we decomposed the lattice into eight sublattices (see 
Fig. 3), which is the minimum number of NN interactions and NN jumps. 
Comparing the results for the time dependence of R~, with the results 
obtained by a serial algorithm, we see that a larger value for Re  results for 
all times of the simulation (Fig. la). The log-log plot (Fig. lb) shows that 
(i) the relative difference between the serial and the (S=  8)-algorithm has 
a maximum already after one MCS and decreases with increasing time, and 
(ii) in the period of 100-5000 MCS a power law seems to be still valid but 
with a considerably reduced growth exponent n = 0.30 • 0.02. Checking for 
Eq. (2) results in Q = 4.19 (!) for the first step, whereas for larger times, Q 
becomes identical to values of the serial algorithm within the error bars. 
This indicates that, at least at the very beginning, the paralMized algorithm 
is effectively simulating another master equation with another dynamical 
time evolution. The different values of the growth exponent n show that 
the relation between the two time scales is not a linear one. One might 
argue that the nucleation period is excluded anyway, since a universal 
behavior with a power law is not expected until the domain size R( t )  is the 
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dominating length scale in the system. But obviously the initial disturbance 
is big enough and flattens out with such a long relaxation time that even 
the long-time behavior is strongly affected. Furthermore, if no test for 
comparison is made, we encounter the misleading circumstance that a time 
regime with a power-law behavior could be identified; however, the 
resulting exponent is completely wrong. 
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Fig. 1. (a) L inear  and  (b) log-log p lo t  of the time dependence of the average d o m a i n  size R~, 
for mode l  I (2 x 1 supers t ructure ,  L = 64) for different updating procedures :  (C l )  r a n d o m /  

serial, ( A )  checkerboard  with S = 8, and  ( O )  checkerboard  wi th  S = 25, The straight lines in 
(b) are fits to a power  law with exponents n = 0.49, 0.30, and  0.45 for serial, S = 8, and  S = 25 

a lgor i thms,  respectively. The curve for S = 25 is shifted for c lar i ty  as indicated by the arrow.  

R e =  ( )~PI )L ,  i.e., R e = 6 4  cor responds  to ~ =  1. 
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When the number of U-sublattices is increased to S = 25, a behavior 
of Re( t )  more similar to the serial algorithm is observed (cf. Fig. 1). The 
kinetic exponent n = 0.45 + 0.02 is closer to its predicted value �89 just as the 
quotient Q approaches values resulting from the serial algorithm. This 
makes one expect that the results might generally be improved when the 
number of U-sublattices S is increased (degree of parallelism decreased). 
However, as shown in Fig. 2a, this is not the case, but an oscillating trend 
is observed instead or, in other words, two different curves can be iden- 
tified. In Fig. 2a these curves are denoted by "misfit" and "fit," respectively. 
(The meaning of this labeling will become clear in a moment.) In order to 
understand the reason for the existence of two curves, Fig. 3 shows the two 
sublattices (A and B) defined by the 2 x 1 superstructure: there are two 
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Fig. 2. (a) G r o w t h  exponents  and (b) quotient  Q defined in Eq. (2) for varying numbers  of 
U-sublattices S in the generalized checkerboard algori thm for model  I (2 x 1 superstructure,  
L = 64). Curves only serve as guidelines. The error  bar  of the last data  point  in (b) is smaller 
than the symbol  size. 
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Fig. 3. Different positions of U-sublattices relative to 2 x 1 superstructure sublattices for 
S=8 and S=25 (see also text): filled circle (0) mark sites belonging to one of S U-sub- 
lattices, dark and light rows indicate the 2 x 1 sublattices. 

antiphase domains possible and in each domain type one "2 • 1 sublattice" 
is occupied (e.g., A) and the other is empty (e.g., B). One can imagine that 
it is important whether all sites of a "U-sublattice" reside on the same 
"2 x 1 sublattice" (defining the curve denoted by "fit") or whether the sites 
reside alternating on both "2 • 1 sublattices" (defining the curve denoted by 
"misfit"). In this context it is very informative to look at Fig. 2b, where 
the quotient Q ( t = 0 )  is plotted versus the number of U-sublattices S. 
A correlated behavior becomes visible: The "worse" the algorithm 
(measured by the deviation of the growth exponent n from its serial value), 
the less Eq. (2) holds. This is true not only for values of Q which are too 
high, but also if Q is slightly to low (e.g., for S =  25, 49). The latter case 
may be an indication of an inhibitory effect on the order-forming process. 
Both effects, enforcing or inhibiting growth, will result in a modified 
kinetics. 

As we will see, strong artificial spatial correlations can be detected in 
all cases (i.e., number of U-sublattices S); however, they strongly influence 
the kinetics only if the U-sublattices and the superstructure sublattices fit 
together (in the meaning of Fig. 3). This effect can directly be observed by 
looking at the short-time behavior of the pair correlation function G(r) (see 
Fig. 4 for S = 16; the direction r shown here is normal to the 2 • 1 rows). 
The starting point is a random distribution of occupied sites with the 
probability of finding a particle given by the coverage 0 =  1 [thus, 
G ( r ) - 0 2 =  �88 The shape after 500 MCS, which is taken for comparison 
from the serial algorithm, shows already the developing superstructure of 
occupied and empty rows (Fig. 4b). If we take the "staggered" pair correla- 
tion function [by reflecting every second point at the line G(r)= 0z= 0.25], 
all data fall on the single solid curve showing a shape well known from the 
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ferromagnetic Ising model. On the other hand, a rather strange picture 
arises already after the first MCS for the ( S =  16)-algorithm. The cases 
S = 16 means that the U-sublattice has a lattice constant of four times the 
lattice spacing-exactly the periodicity of 4 found in G(r). A full period is 
marked by a dotted line in Fig. 4c and has itself a modulation with 
"periodicity" 2, indicating short-range order of alternating occupied and 
empty sites. After 100 MCS a simultaneous formation of the 2 x 1 order 
over the whole lattice can be observed (Fig. 4d). This is equivalent to high 
initial values of R(t), which then cause the reduced exponent n (cf. Fig. lb). 
A coupling of this type is not possible if the superstructure and the U-sub- 
lattices do not fit together. 
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Fig. 4. Short-time behavior of the pair correlation function G(r) in the direction normal to 
the developing rows of the 2 x 1 structure: (a) starting point (t = 0 MCS), (b) random/serial 
algorithm after t = 500 MCS, (c) S = 16 checkerboard at t = 1 MCS, and (d) same as (c), at 
t = 100 MCS. 
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The conclusion is therefore always to choose U-sublattices which do 
not fit to the sublattices defined by the superstructure. If such a subdivision 
is not possible (e.g., when the quench is performed into a coexistence 
region of two phases with different periodicities) or if an algorithm is 
desired which is generally applicable, independent of the structure under 
consideration, the slow convergence toward the correct value n= �89  
(demonstrated in Fig. 2a) makes a more sophisticated algorithm necessary. 
A last remark of this section refers to possible "fingerprint" measures of the 
difference between a parallel algorithm and the serial one. The simplest way 
is to calculate the difference in R(t) at each time t and then to sum up 
(over all times) the modulus or the square of that deviation. We found 
additionally that the amount of the reduction of the kinetic growth 
exponent n is a very sensitive measure, too, which gives almost the same 
information and which will therefore be used in the following sections. 

4. T E S T  OF O T H E R  M O D E L S  

In this section we show the above results to be general, i.e., they not 
only hold for model I, but also for other lattice gas or spin models. We 
expect qualitatively the same effects for every model with superstructure 
domains, whereas in the absence of a superstructure the kinetics should be 
independent of the algorithm under consideration. This idea suggests that 
one investigates in a next step a model which shows the formation of a 
superstructure, too. 

4.1. Presence of  S u p e r s t r u c t u r e  

We choose a lattice gas model isomorphic to the well-known 
antiferromagnetic Ising spin model. According to the nonconservation of 
the order parameter in this case, the theoretically predicted value for the 
kinetic exponent is again n--�89 As a reference we again used a serial 
random-updating version and from the evaluation of R e we found n = 0.52 
in only 200 runs. Afterward we switched to a parallel algorithm with S = 8 
and looked at the time dependence of R~. As for model I, the order 
parameter values are much higher than in the serial case, but as 
demonstrated in Fig. 5, no power law is valid for the full time scale. With 
increasing time the locally fitted values for n drop continuously from 
n = 0.26 at the beginning. This low kinetic exponent nicely confirms our 
interpretation of the previous section. The fact that for model lI [c(2 x 2) 
superstructure] the influence of the artificial correlations is stronger and 
that the--locally def ined-exponent  is below the value for model I (2 x 1 
superstructure) can be explained as follows: Going along the directions 
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m a r k e d  b y  the  la tera l  interactions, one finds a periodicity 2 in both direc- 
tions for mode l I I ,  whereas for model I, only a l o n g  the  direction of 
r e p u l s i v e  interaction, i.e., across the 2 x 1 rows, does a periodicity 2 appear .  

If, on the  o t h e r  h a n d ,  a misfit b e t w e e n  the  s u p e r s t r u c t u r e  a n d  the  U-sublat- 
tices will occur (e.g., S = 2 5 ) ,  this misfit extends in both directions for 

m o d e l  I !  a n d  gives a time evolution which is more similar to the  serial  
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Fig. 5. (a) linear and (b) log-log plot of the time dependence of the average domain size R~ 
for model II [c(2 x 2) superstrcture] for different update procedures (serial and S = 25: lattice 
size L =  64; S =  8: rescaled results for L = 256): (E3) random/serial, ( • )  checkerboard with 
S =  8, and ( � 9  generalized checkerboard with S =  25. The straight lines in (b) represent the 
fitted algebraic growth law with exponents n = 0.52, 0.26, and 0.52 for serial, S = 8, and S = 25 
algorithms, respectively. The curve for S = 25 is shifted for clarity as indicated by the arrow. 
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algorithm as for model I with S = 25. This supports strongly the idea that 
the relationship between a superstructure periodicity and a U-sublattice 
periodicity is decisive for the quality of the algorithm. 

When we use the reciprocal excess energy A E  1 to measure R, we get 
similar results. One difference is that the reduction of the exponent is less 
drastic (n = 0.42) than for Re ;  the other is that the considerable changes 
in the "nucleation" period seen by R e are not detectable by evaluating R e 

and that only the long-time behavior is modified. This discrepancy in the 
exponents according to different measures of R may help one to recognize 
a "wrongly" working parallel algorithm. But this discrepancy raises the 
question of whether the algebraic growth regime is reached or not, because 
from this time on, all length scales and derived exponents should be 
equivalent. Since the difference in the exponents holds even in simulations 
with a linear lattice size L = 256, we believe that the effect is caused mainly 
by spatial correlations in the parallel algorithms. 

In the literature (39'4~ the same generalized checkerboard method was 
applied to a very similar model, the Ising model with antiferromagnetic 
interactions, but with Glauber (spin-flip) instead of Kawasaki (spin- 
exchange) kinetics. The authors of refs. 39 and 40 found no deviations from 
the serial results when they used an algorithm with S = 16 and measured 
the domain size via the excess energy. We evaluated the kinetic exponent 
for S = 16, too, but using Kawasaki kinetics, and found n to lie far below 
the theoretical value n = �89 (n = 0.38 + 0.02 for RE and n ~< 0.39 for Re ,  only 
locally defined exponents). To search for reasons why the serial and the 
(S = 16)-algorithm give different results only for Kawasaki kinetics and not 
for Glauber kinetics, we tested several pseudo-random-number generators 
(for S = 8  and model I): a linear congruential generator for a 32-bit 
processor (s6) (xi+~ = axi  mod m with m = 2 31 and a = 331,804,469), the 
built-in generators "RANF" (for a CYBER 995E and a CRAY Y-MP), and 
"g05_ mc_ r4 ''(57) (for the processor array AMT-DAP 500) and a feedback 
shift register modulo generator based on the ideas of Tausworth (sS) and 
with modifications of Kirkpatrick and Stoll (sg) ( x i = X i _ q . X O r . x i _ p  with 
p =  532, q =  37). However, all tests confirmed our previous results. So, 
either the effect of a modified exponent is negligibly small or nonexistent 
for Glauber kinetics or it remained undetected by Shah and Mouritsen (39) 
due to some insensitivity of the excess energy with respect to spatial 
correlations. 

4.2. Absence  of S u p e r s t r u c t u r e  

In the following we investigate a model without a superstructure, for 
which we expect no or only vanishingly small effects due to artificial spatial 
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correlations. Model III has the desired properties because only 1 x 1 islands 
grow. All calculations for this model were performed for a linear lattice size 
L = 256. Since the order parameter is conserved, the system should follow 
a Lifshitz-Slyozov growth mode with n - �89 However, as known from pre- 
vious studies, (22'23) additional basic assumptions must be incorporated into 
the framework of the Lifshitz-Slyozov theory in order to allow a correct 
interpretation of results from simulations. These theoretical "corrections" 
lead to modifications of the algebraic growth law for intermediate times 
and have to be considered in the evaluation of the true exponent n. Two 
possible suggestions involve corrections by additional diffusion along the 
domain boundaries (22) or by a reduced driving force for the domain growth 
due to the finite roughness of the boundaries. (23) Regarding the transport 
along the interfaces, a time-dependent, "effective" exponent ne~ appears, (22) 
which asymptotically converges to ~: 

d l n R  1 const 
O(R ~) (3) neff- dln t 3 R(t) 

If a finite roughness of the domain boundaries is included in the 
theory, a power law for R with an offset R0 is valid (23) (Ro is of the order 
of the finite roughness of the boundaries): 

R(t )=a. t  n+Ro with n=1/3 (4) 

Computing the effective exponent from Eq. (4) immediately gives 
Eq, (3) when R(t)~>R o. Despite the different physical interpretation, the 
resulting effective exponents should be equal and so this agreement 
provides a phenomenological basis for an analysis: The true asymptotic 
exponent results from a fit to Eq. (4) or by a linear extrapolation of the 
function nefr(1/R) for 1/R ~0.  To check this behavior, we applied both 
procedures. For the serial algorithm a fit of Re(t ) to Eq. (4) (fitting n and 
Ro) gives n=0.33 and R0=5.9 (Fig. 6a). From the extrapolation of 
Re--, Go an exponent n=0.33 results (Fig. 6b). Only points for which 
Re(t) > 2Ro~ 12 were used in both cases because Eqs. (3) and (4) become 
equivalent only if the condition R(t)~> Ro is valid and because the whole 
time dependence of RE cannot be described by Eq. (4) (see the deviations 
in the initial phase in Fig. 6a, where the asymptotic growth is not yet 
reached). Because of the uncertainty in fixing the correct starting point for 
the fit, a relatively large error of An = 0.03 results. Equations (3) and (4) 
predict the fit to become the better the more initial values are omitted, but 
then the larger fluctuations of the late-time data affect the accuracy of 
the fit. 

A few more words must be said about the determination of the effec- 
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tive exponents. We evaluate ner f by numerical differentiation of the data on 
the log-log scale. Since already small fluctuations in the data cause large 
fluctuations in neff (cf. Fig. 7a), the original data were smoothed on the 
log-log scale before we determined the effective exponents (Fig. 7b). The 
smoothing on the double logarithmic scale was done by creating a new 
data point simply by calculating the "center of mass" of five successive 
points of raw data (log(ti), log [R(ti)]  ). This smoothing procedure was 
chosen because a power law is invariant under this transformation. Com- 
pared to the procedure proposed by Amar et  al. (37) (neff results from a fit 
in the interval It  i, 2/i]), the advantage of this procedure is to get values ndf 
which are better localized in time. The smoothing procedure only reduces 
noise, but leaves extrapolated exponents unmodified within an accuracy of 
1%. 

For  the (S=8)-algori thm we finally found exponents according to 
Eqs. (3) and (4) which are only slightly different from those of the serial 
algorithm and from the theoretical value n =  1. The good agreement 
between serial and parallel algorithms still holds if the zeros of the spin 
autocorrelation function are evaluated. Nevertheless, we can still detect 
artificial correlations--very similar to those of model I-- in the very beginn- 
ing of the nucleation process (cf. Fig. 8). However, because of the missing 
superstructure, no coupling effect, as demonstrated in Fig. 4d, is possible 
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Fig. 6. (a) Log-log plot of Re(t ) for model III (1 x 1 structure) simulated with a serial 
algorithm (lattice size L = 2 5 6 ) .  The solid curve is a fit to Re(t ) = Ro+at" with n =0.33, 
Ro = 5.9. (b) Effective exponent nofr [see Eq. (3)] as a function of 1~Re [same data as (a)].  
The straight line is an extrapolation to R e ~ oo with result n = 0.33 (only data for RE>  12 are 
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Fig. 8. Short-time behavior of the spin autocorrelation function Gs(r)= (sos,) in the 
direction of the NN interaction for model III (1 x l structure): (a) expected behavior after 
t=40000 MCS (random/serial algorithm), (b) generalized checkerboard algorithm with 
S = 1 6 a t  t = I M C S .  

and consequently the strange shape of G(r) vanishes very soon. A part of 
our observations is in agreement with a previous study (37) in which an 
algorithm with S = 16 was applied (without further checks mentioned) and 
from which also the predicted exponent n = �89 resulted. 

5. PROPOSAL OF IMPROVED ALGORITHMS 

5.1. Hybrid Algorithm 

From the above results it is obvious that parallelized MC algorithms 
for superstructure growth kinetics should have features which reduce 
spatial correlations. In section 3 the reduction was done by increasing the 
number of U-sublattices. But because of the slow convergence of the kinetic 
exponent toward the theoretical value, another solution is desired. Our aim 
is therefore to construct an algorithm which works for a large number of 
lattice gas models with superstructures, regardless of their complexity. We 
made simulations for model I starting with an algorithm which uses the 
minimum number of sublattices (here: S = 8) and tried to improve it. The 
simplest way to do this is to consider only a fraction f of randomly selected 
"active" sites (39'6~ of one U-sublattice at a time instead of the whole sub- 
lattice. Clearly, as the fraction f goes to zero, the artificial spatial correla- 
tions vanish and the parallelized algorithm becomes a serial one, but a 
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lower bound for f is given by the hardware. If the number of parallel 
updated sites (=fL2/S) falls below the number of processors in a SIMD- 
processor array (e.g., AMT-DAP), the algorithm becomes inefficient. For 
vector processors the lower bound is less definite and approximately lies 
between half of and the full vector length. For example, if L = 64, S = 8, 
and the vector length is 64 (CRAYY-MP), we get f>~ 1/16... 1/8. We 
decreased this fraction starting from f =  1 (all sites within a U-sublattice) 
to f =  1/16. From Fig. 9 it is obvious that a further reduction of f yields 
only a very slow convergence of the kinetic exponents to n = �89 

Because of the insufficient accuracy even at f =  1/16 (exponent 
n = 0.42), we took into account that especially in the nucleation phase the 
system reacts very sensitive to correlations and used a serial algorithm with 
fully random updating in the initial phase of every run. After about 
50-100 MCS the crucial time period is over and we switched to the parallel 
( S =  8)-algorithrn. Since the time range of "free" growth (simulated with 
parallel updates) was typically three magnitudes larger than the initial 
"nucleation" period (with serial updates), only slightly more CPU time is 
needed for this kind of "hybrid algorithm" on the CRAY Y-MP in com- 
parison to the fully parallelized program version. On a processor array like 
the AMT-DAP the same hybrid algorithm is possible in principle, but the 
serial part of the algorithm will be less efficient than on a vector processor. 
Possibly it is sufficient to use only a "less parallel" version with a high 
number of U-sublattices S instead of a completely serial part, but we did 
not check this. With this modification an exponent n = 0.485 _+ 0.01 results, 
which is already within the error of the serial result. An even more precise 
value results if roughly the same "trick" is applied again and a serial MCS 
is inserted every 20 parallel MCS in order to suppress residual artificial 
correlations. We finally found a kinetic exponent n=0.506+0.015 for 
model I with this modified parallel algorithm, which is still a factor of 
about four faster than a serial MC algorithm (CRAY Y-MP results). 
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Fig. 9. Growth exponents for different "hybrid algorithms": ( �9  decreasing fraction f of 
"active" sites within a U-sublattice; ( A ) f =  1/16 and nucleation period up to 100 MCS 
simulated by a serial algorithm; ( [ ] )  additional serial MC step inserted after every 20th MCS. 
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5.2. Mask  A lgor i thm 

In all algorithms presented so far regular sublattices are used and the 
inherent spatial periodicity in the sequence of the updated sites caused 
crucial artificial correlations. A logical next step for an improvement is to 
give up the concept of regular sublattices. However, if only randomly 
distributed sites should be considered in parallel, their mutual inde- 
pendence must be checked in advance. But this cannot be done for every 
individual MCS, because it is a very time-consuming task, which intrinsi- 
cally cannot be parallelized. The idea is to do this job only once at the 
beginning of each MC run and to store the information for further, 
repeated use. We constructed groups of independent sites, which are 
randomly distributed over the lattice. Such a group is called a "mask." Each 
mask contains the same number M of independent sites (=m ask  size). All 
sites within a mask are updated in parallel; therefore the parameter M 
controls the degree of parallelism and is comparable to the quantity fL2/S 
in the hybrid algorithms. It is clear that with an increasing mask size the 
arrangement of the sites within a mask will become more and more regular 
and for M = L ~ / S  we will get just the same sublattices as used for the 
hybrid algorithms. In practice we stay far away from this upper limit for M. 
On the other hand, we approach the serial algorithm when the mask size 
goes to zero. Our masks are built in such a way that their union covers the 
whole lattice. For  the L 2 lattice sites we get L2/M masks, which we call a 
"mask set." Since during the simulation less random numbers have to be 
calculated for these "mask algorithms" (only one mask is chosen instead of 
M single sites?), the time for the construction of the masks is compensated 
and so in total roughly the same CPU time is required compared to a 
hybrid algorithm with comparable efficiency. 
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and additional serial MCS after every 10 MCS. 
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In ou~ tests we varied the mask size (M= 32, 64) and the number of 
mask sets (1, 2, and 4) and obtained for model I kinetic exponents in the 
range n = 0.464).49 (see Fig. 10) for all parameters used. The exponents are 
only slightly improved by decreasing the mask size and increasing the 
number of mask sets. This means that in fact all exponents are generally 
very close to the serial result, but small differences are still present. 
A higher number of mask sets or lower values for the mask size are ruled 
out because of the additional memory needed for storing the masks and the 
reduced parallelism, respectively. In order to improve the algorithm 
further, we again inspected the nucleation period, but no spatial correla- 
tions were visible and therefore no corrections were needed. A further 
improvement is reached by inserting a serial MCS from time to time. If this 
is done every 10 parallel MC steps, we get an exponent n =0.495_+ 0.01 
and, compared to the serial results, identical R(t) curves within the errors 
bars. 

6. S U M M A R Y  

A generalized version of the checkerboard algorithm was used for the 
simulation of domain growth at fixed coverage (Kawasaki dynamics). As a 
consequence of parallel updates of sublattices, the evaluation of the pair 
correlation function for different times reveals that strong artificial spatial 
correlations are introduced into the system. The results of our simulations 
point out, however, that only in the case of superstructure domain growth 
(and depending on the fit or misfit of "update" and "superstructure" 
sublattices) is the nucleation period distorted in a very peculiar manner. 
This leads to strong modifications even of the late-time behavior of the 
growth process and results in a considerably (up to 50 %) reduced growth 
exponent with respect to the conventional (serial) heat-bath algorithm with 
random single-site updates. In contrast to the findings for the kinetics of 
lattice gas models with superstructure domains, no significant change in the 
kinetics can be detected in the case of phase separation in a 1 x 1 model 
(without superstructure). In order to overcome the artificial modifications 
introduced by parallel update procedures, we developed two algorithms 
with gradually reduced parallelism: A "hybrid" algorithm with additionally 
inserted serial MC steps and a "mask" algorithm which abandons the 
concept of regular sublattices and uses sets of randomly distributed inde- 
pendent lattice sites in the parallel updating procedure instead. Our algo- 
rithms provide a reasonable compromise between an efficient use of parallel 
computing facilities and the applicability to the study of superstructure 
growth kinetics. 
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